The Relationship of Biological Monitoring to Ecological Restoration and Ecological Recovery

Dr. Michael T. Barbour Center for Ecological Sciences Tetra Tech, Inc. U.S.A.

Stream Functions Pyramid

A Guide for Assessing & Restoring Stream Functions » OVERVIEW

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

4 PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

3 **GEOMORPHOLOGY** » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

 ${f 9}$ HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY » Transport of water from the watershed to the channel

Purpose of presentation

- A. What is ecological recovery?
- B. Why is it different from ecological restoration?
- C. What is biological monitoring and assessment?
- D. How are results from monitoring and assessment used for ecological restoration decision-making?

Ecological Restoration is re-establishing morphological features of the river or mitigating water quality impediments to represent natural or desired state of being to regain its ability to support a naturally reproducing and sustainable aquatic community relevant to the social, economic and political factors.

Ecological Recovery is re-establishing valued attributes of the aquatic community within a period of time, given its ecological capacity to regain lost functionality, and considering its exposure to stressors affecting its improvement in condition.

Ecological Integrity

Chemical Integrity

Physical Integrity

Biological Integrity

COMPONENTS OF RIVER SYSTEMS BIOLOGY **ENERGY** PATHWAYS/CONNECTIVITY **HYDROLOGY** FLOW (cfs) 2000 1500 1000 WATER QUALITY **GEOMORPHOLOGY** Month

The Process

Stressors sources

Stressors

Response indicators

Sources of Stressors

Natural "stressors"

These events are the extreme!

But, they are really part of the natural variability...

Sources of Stressors

 Human activities, or the result of human activities, that create stressors

Urbanization Livestock Grazing, Feedlots

- Removal of watershed vegetation
- Urban/suburban development

Channel alteration

Urbanization

The river catches on fire

There are many stressor sources

- Human waste/sewage
- Fertilizer application
- Cultural pollutant input
- Industrial effluent
- Hazardous waste site/landfill leachate
- Channel alteration
- Impoundment

- Riparian de-vegetation
- Watershed de-vegetation
- Grazing
- Row crop agriculture
- Transportation corridors
- Surface-mining sites
- Combined animal feeding operations (CAFO)
- Impervious surface/stormwater

Sources of Stressors

Response indicators

Stressor (biological assessment)

 Any humaninduced agent that limits the biological capacity for survival and reproduction

There are many potential stressors

- Metals
- Sediments
- Nutrients
- Ionic strength
- Low dissolved oxygen
- Temperature (degraded habitat)
- Non-native species

- Increased flashiness (Flow alteration)
- Flow hindrance (dams)
- Unspecified toxic chemicals
- Altered energy input (Degraded physical habitat)

Stressors sources

Stressors

Response indicators

Response indicators

- Most widely used in North America, for freshwater ecosystems
 - Benthic macroinvertebrates
 - Fish
 - Periphyton (mostly diatoms)
 - Zooplankton/phytoplankton
- For estuaries
 - Macrobenthos
 - Aquatic vegetation: submerged, emergent, floating
 - Fish

The Biological Condition Gradient: Biological Response to Increasing Levels of Stress

Levels of Biological Condition

Natural structural, functional, and taxonomic integrity is preserved.

Structure & function similar to natural community with some additional taxa & biomass; ecosystem level functions are fully maintained.

Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained.

Moderate changes in structure due to replacement of some sensitive ubiquitous taxa by more tolerant taxa; ecosystem functions largely maintained.

Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major taxonomic groups; ecosystem function shows reduced complexity & redundancy.

Extreme changes in structure and ecosystem function; wholesale changes in taxonomic composition; extreme alterations from normal densities.

Watershed, habitat, flow regime and water chemistry as naturally occurs.

Chemistry, habitat, and/or flow regime severely altered from natural conditions.

生物状态梯度: 对增长的压力层次的生物学反应

生物状况的层次

自然的结构性, 功能性, 和分类的完整性保存下来

结构与功能和自然群落类似,有某些多出的物种类和生物量,保有全部的生态系统功能

有证据显示结构的变化,少量稀有物种确实,相对丰度发生变化;保有全部的生态系统功能.

中等程度的结构变化,一些常见的敏感种类被更具忍耐性的种类所代替,保有大部分的生态系统功能.

敏感种大量消失;大多数分类群呈现显著的不平衡的分布;生态系统功能呈现减少的复合性和重复性.

生态系统结构和功能发生极端的变化;分类组成上发生大规模的变化;正常密度发生极端转换.

水流域, 生境, 流动型态 和水化 学如自然发生.

化学,生境,和/或流动型态从自 然状态下严重的扭转.

If biota are unhappy, it's up to us to figure out what is making them unhappy

Urbanization - Conceptual Model

The Elements of Recovery Potential

What might ecological recovery potential mean to water agency programs?

- > opportunity to restore higher environmental quality or protect what's not yet lost
- > create/maintain greater ecological goods and services
- > seek the optimum mix of management actions that are feasible and affordable

Multiple factors come into play as restoration and protection are considered:

* 12 highlighted factors --

Public health Communication

Demographics Local identity

Education Economic conditions

Governance Property/land use

Recreation Natural landscapes

Boundaries *Ecology*

In Effective Stakeholder Involvement, You Need Patience

Concepts of environmental quality and stressor intensity are important to priority-setting and recovery potential

Watershed examples sorted by Stressors X Quality

Increasing Stressor Intensity

Which sites might reflect 'recovery potential' approach priorities?

Site C

Site B

No; few problems, high quality

Site D

Yes; more problems and leaning vulnerable.

High Q-Low S

High Q-High S

Low Q-High S

Yes; high value, recovery potential, problems are significant but worth the effort.

Low Q-Low S

Site A

No; few problems, little quality.

Site E

No; low quality, severe impairment, bad prospect for recovery.

Increasing Stressor Intensity

Which sites might reflect 'worst first' approach priorities?

Site B

No; few problems.

 Site D No; few problems but vulnerable.

High Q-Low S

Low Q-Low S

Site A

No; few problems.

• Site C recovery potential,

High Q-High S

Low Q-High S

Site E

Yes, despite low quality, severe impairment, bad prospects for recovery.

No; high value,

the worst.

but problems aren't

Increasing Stressor Intensity

Biological monitoring and assessment as a measure of recovery

- Phase 1 of bioassessment Problem identification
- Implement correction (Restoration, remediation, engineering)
- Phase 2 of bioassessment Evaluate effectiveness (ecological recovery)

Lake Allatoona/Upper Etowah River Watershed; Georgia

- •1612 total stream channel miles
- •Through 2008 (Year 4): 211 sites sampled
- •Basin is 65% assessed (1,047 mi.)
- •42.2% biologically degraded (442 mi.)

Lake Allatoona/Upper Etowah River Watershed; Georgia

Yellow Creek subwatershed

- Stressors (stressor sources)
 - Physical habitat degradation (watershed and riparian de-vegetation, some logging and other agricultural activities)
 - Nutrients (chicken houses <1.5 miles from each location)
- "Fixes" (=stressor reduction activities)
 - BMPs, re-vegetation, nutrient management restrictions, bank stabilization, etc.

Yellow Creek subwatershed (monitoring)

- A) Short-term effectiveness: success in stressor reduction
 - Monitor stressors that a particular BMP or "fix" was intended to control
- B) Long-term effectiveness: success in ecological recovery (long-term)
 - Requires routine *biomonitoring* of/for response indicator

Yellow Creek subwatershed (evaluating restoration success)

- A) Short-term effectiveness
 - Improved bank stability and instream physical complexity, decreased pct fines, elevated geomorphic stability, reduction in nutrients
- B) Long-term effectiveness: success in ecological restoration
 - Reduction of number or pct of biologically-degraded stream miles
 - e. g., over 5-year period, reduced from 27.9 to 14 miles degraded

Take home message(s)

- Environmental and watershed management, done correctly, consists of
 - Restoration (eliminating stressors), and
 - Protection (preventing stressors)
- Do everything you can to ensure defensibility of decisions.
 That means
 - Biomonitoring for effectiveness of restoration, and
 - Using ecological indicators useful for communicating success
- Restoration is not restoration unless biology responds positively (Recovery)

Thank you

Questions?

